ml.postprocessing.mediapipe — Google Mediapipe¶
The ml.postprocessing.mediapipe module contains classes for Google Mediapipe.
class BlazeFace – Face Detection¶
Used to post-process BlazeFace model output.
Constructors¶
- class ml.postprocessing.mediapipe.BlazeFace(threshold: float = 0.6, anchors=None, nms_threshold: float = 0.1, nms_sigma: float = 0.1) BlazeFace¶
Create a BlazeFace postprocessor.
thresholdThe threshold to use for postprocessing.anchorsA list of anchor points(x, y)the model was trained on to use for postprocessing.This post-processor returns a list of rect
[x, y, w, h], score, and (x, y) keypoint list tuples. E.g.[((x, y, w, h), score, keypoints)]. Note that empty class list are included in the output to ensure the position of each class list in the output matches the position of the class index in the model output.
class BlazePalm – Palm Detection¶
Used to post-process BlazePalm model output.
Constructors¶
- class ml.postprocessing.mediapipe.BlazePalm(threshold: float = 0.6, anchors=None, nms_threshold: float = 0.1, nms_sigma: float = 0.1) BlazePalm¶
Create a BlazePalm postprocessor.
thresholdThe threshold to use for postprocessing.anchorsA list of anchor points(x, y)the model was trained on to use for postprocessing.This post-processor returns a list of rect
[x, y, w, h], score, and (x, y) keypoint list tuples. E.g.[((x, y, w, h), score, keypoints)]. Note that empty class list are included in the output to ensure the position of each class list in the output matches the position of the class index in the model output.
class FaceLandmarks – Face Landmarks¶
Used to post-process FaceLandmarks model output.
Constructors¶
- class ml.postprocessing.mediapipe.FaceLandmarks(threshold: float = 0.6, nms_threshold: float = 0.1, nms_sigma: float = 0.1) FaceLandmarks¶
Create a FaceLandmarks postprocessor.
thresholdThe threshold to use for postprocessing.This post-processor returns a list of rect
[x, y, w, h], score, and (x, y, z) keypoint list tuples. E.g.[((x, y, w, h), score, keypoints)]. Note that empty class list are included in the output to ensure the position of each class list in the output matches the position of the class index in the model output.
class HandLandmarks – Hand Landmarks¶
Used to post-process HandLandmarks model output.
Constructors¶
- class ml.postprocessing.mediapipe.HandLandmarks(threshold: float = 0.6, nms_threshold: float = 0.1, nms_sigma: float = 0.1) HandLandmarks¶
Create a HandLandmarks postprocessor.
thresholdThe threshold to use for postprocessing.This post-processor returns a list of rect
[x, y, w, h], score, and (x, y, z) keypoint list tuples for each class in the model output (left=0, or right=1) E.g.[[((x, y, w, h), score, keypoints)]]. Note that empty class list are included in the output to ensure the position of each class list in the output matches the position of the class index in the model output.